UNIFIED INTERPRETATION OF PART 3 OF ANNEX 1 TO THE 2010 FTP CODE

1 The Maritime Safety Committee, at its ninety-fourth session (17 to 21 November 2014), with a view to providing more specific guidance for testing and approval of pipe penetrations and cable transits which do not utilize conventional components, for use in "A" class divisions, approved a unified interpretation on part 3 of annex 1 to the 2010 FTP Code, prepared by the Sub-Committee on Ship Systems and Equipment at its first session (10 to 14 March 2014), as set out in the annex.

2 Member Governments are invited to use the annexed unified interpretation as guidance when applying paragraph 1.13 of appendix 1 to the 2010 FTP Code, annex 1, part 3, for approvals to be granted on or after 21 November 2014 and to bring the unified interpretation to the attention of all parties concerned.

ANNEX

UNIFIED INTERPRETATION OF PART 3 OF ANNEX 1 TO THE 2010 FTP CODE

TEST FOR "A", "B" AND "F" CLASS DIVISIONS (ANNEX 1 TO PART 3)

1 Arrangement

1.1 "A" class pipe penetrations and cable transits that are:

 .1 constructed without structural sleeves of minimum 3 mm thickness and minimum 60 mm length welded or bolted to the division; and/or

 .2 constructed with removable, soft or intumescent filling material,

are "those types of constructions which do not utilize conventional components of horizontal and vertical divisions" (appendix 1, paragraph 1.13) and are to be subject to additional testing and/or design criteria as described below.

2 Additional testing/design criteria

2.1 Filling materials should be adequately secured by bonded materials or mechanical means that cannot be removed without the use of tools in order to prevent damage by normal ship vibrations and pressures.

2.2 The pipe penetration/cable transit should not have any visible openings. It should not be possible to manually penetrate any part of the penetration with a 6 mm gap gauge, as described in paragraph 7.10 of annex 1 to part 3 of the 2010 FTP Code.

3 Approval

3.1 Penetrations in structural divisions should not impair the structural strength of the division. The structural make-up of the penetration is to be fully described so that its use and the need for additional stiffening for the division can be fully assessed.